Equivariant Hilbert series in non-noetherian polynomial rings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivariant ^-theory for Noetherian Rings

A number of results are proved concerning the Quillen ^-theory K+(S*G) of the skew group ring S*G, where S is a Noetherian ring and G is a finite group of automorphisms of 5. Applications are given to the computation of AT-groups of group algebras and of equivariant /^-theory for affine varieties.

متن کامل

Noetherian Skew Inverse Power Series Rings

We study skew inverse power series extensions R[[y−1; τ, δ]], where R is a noetherian ring equipped with an automorphism τ and a τ -derivation δ. We find that these extensions share many of the well known features of commutative power series rings. As an application of our analysis, we see that the iterated skew inverse power series rings corresponding to nth Weyl algebras are complete, local, ...

متن کامل

Polynomial Iungs over Jacobsoñ-hilbert Rings

CARL FAITH All rings considered are commutative with unit. A ring R is SISI (in Vámos' terminology) if every subdirectly irreducible factor ring R/I is self-injective . SISI rings include Noetherian rings, Morita rings, and almost maximal valuation rings ([Vil) . In [F3] we raised the question of whether a polynomial ring R[-1 over a SISI ring R is again SISI . In this paper we show this is not...

متن کامل

Factorial and Noetherian Subrings of Power Series Rings

Let F be a field. We show that certain subrings contained between the polynomial ring F [X] = F [X1, · · · , Xn] and the power series ring F [X][[Y ]] = F [X1, · · · , Xn][[Y ]] have Weierstrass Factorization, which allows us to deduce both unique factorization and the Noetherian property. These intermediate subrings are obtained from elements of F [X][[Y ]] by bounding their total X-degree abo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2017

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2017.05.011